BLUNT BODY IN SUPERSONIC FLOW OF GAS MIXTURE
WITH CHEMICAL REACTIONS:

V. I. Bronshtein, B. N. Yudaev, UDC 533.6.011.5
and T. L. Perel'man

An analysis is conducted of the case of a blunt axially symmetric body in a stationary
flow of gas mixture with equilibrium chemical conditions for M, > 1. In the solution
the method of integral relations [1] is employed,

1. In the curvilinear coordinate system s, n, where s is the arc length of the body and n is the distance
along the normal to the body (Fig. 1) the following equations govern the motion of an inviscous, thermally
nonconductive gas:
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The above can be brought to divergence form [1]:
o ~ 4 =
@)+ — (A)=0; (1.4)
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Os on
9 a4+ 4n-v. (L.6)
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The following notation has been introduced in the above [1]:

2=r2= rpuv; t=ri=rpv; I=rl=rpu; L=rL=r (p+ru?);
Y=Kg+ Acos0; g=r(p+pv?); A=1+Kn; r=ry,4-ncos 6;
X=—Kz+ Apsine.
The equations have been written in dimensionless form. The units of the variables w, p, p, T, h, S, H, s, n
have been taken to be, respectively: wy g%, Poo, pmvﬁhax, wmaxiteo/ R, “’?rxiax/ 2, R/ 28w, Mooy Ry.
Additional equations:
hfat=1, a.m

Tds = dh—2 P, | (1.8)
0
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h=k{p, Th (1.9)
p=p(, T). (1.10)

The system (1.4)-(1.10) is solved by using the method of in-
tegral relations [1]. One draws N — 1 intermediate curves
between the body and the wave:

n;=¢(s) N~L+l; i=2, ..., N; ng=0; ny;=e(s). (1,11
. (- @11)

The functions z, t, g, L, Y, 1, X are now approximated
by polynomials of degree N in the variable n. The substitution
of the polynomials in Eqs. (1.4}-(1.6} and subsequent integra-
tion of the equations with respect tonfromn=0ton =n;
tom produces a system of ordinary differential equations for the

) unknown functions along each strip n = nj(s), If these equa-
tions are solved for v', u', p!, T', p' one obtains equations
for the unknown parameters. Below certain equations which will prove useful later on are given; the com-
plete system can be found in (11,

Fig. 1. A body-~fixed coordinate sys-

N =1 (the first approximation):

— . g - - 2 - = —
t() = (tl'— tq) - (Alil - lo) —t
g . e

’

- - 2 5 T
5= T — (AL, —AgLy) + Yo+ Y%

e
N=1, 2; z)(')on/No; v;:Ez/Nz; (1.12)

I =
Ey = — {to—ryty);

Ta
1 = o ze—bu vDB
= — (fp—rot )+ 222 o, :
EZ Py (2 T2 z)+ rzcg e ( hT )2,
A (-
Uy = - (22— ta up);
2
op ou ov 4 uz)
B=|— H—4v— — A, 2.
(6n+p( 6n+ 6n))(2 202

The system (1.12) is an approximation of (1.4), (1.6)-(1.9). Equation (1.8) was taken on the current curve
and was projected on the curves n = n;.

2. The conditions on the body, on the infersection of the shock wave and the symmetry axis, and on
the symmetry axis are formulated in the usual way. Along the shock wave these conditions can be written
as

do,  0uhrcosc — o, (DD +pr D)

da phr — @, (D0 sin g — 2pr @,)
_d_p:q:v—mwsinc iifl—)l;
do do 2.1)
&
&__2f, dn L b B,
do T do p do 2

Dy=(p ir — 0 hy); n=e(sh

D, =0? sin2c; @=P; — 0,0, 080,

where wj, wy, are tangential and normal to the shock wave velocity components; o, § are angles between
the shock wave and body contour, respectively, and the symmetry axis; h, hp, AT, Pp are partial deriva-
tives of h, p with respect to T and p. The following conditions hold on the singular curve (v = ¢):
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E =0, if Ny=0; E,=0, if Ny=0. 2.2)

The approximating system is now solved in the following order. The values £(0), uy(0) are given, The
parameters py(0), T¢(0), py(0), T,(0) are found using the system (2.3) which determines the distribution

of parameters on the symmetry axis:

dp du
—— = —;
dn dn
2.3)
dr 1 du
& e (ohy—u &
dn hT (‘p 4 )u

Subsequently, the system (1.12) and (2.1) can be integrated.

3. The point s = 0 is singular for some solutions of the system (1.12). Close to s = 0 the solution is
sought in the form

Fo M=) Fu(0, m) -0 (. (3.1)
: k=1

If (3.1) is inserted in Eqgs. (1.1)-(1.3) and (1.7)-(1.10), then, taking terms up to 0(s%), we obtain the system:

v
Vipg -+ Augp, a—’; + poKttgvy +- 2p, =0;

20,0, Augp,

Outy ou, oy, d
+Au 2 4 Auy 0 Ky? P .
an +oPe =g, T Ay 5 P — Ko+ 4 —E =0,

0T + 00Ty = oty -+ Pobin; (3.2)
hops + hr Ty + 20, + (v)2 = 0;

%, ox,
pe=Sp, [Tg - il } :

or + P ap

The expansion coefficients in (3.1) are the unknowns in Eqgs. (3.2). If, as previously, fi.(n) is approximated
by polynomials in n, there results a system for determining fi. which can be solved together with the sys-
tem (1.12). By using (3.1) a solution can be obtained close to s = 0; it can subsequently be continued by
integrating the basic system (1.12). For frozen chemical reactions hy = xp = Xp = 0 and the system (3.2)
becomes less involved.

4. To solve the problem it is necessary to find the values £(0) and uy(0) for N = 2 or £(0) for N =1
such that, as the result of the integration of the system (1.12) on the singular line, the condition (2.2) is
satisfied. Suppose that, at the iteration k, we have £®)(0), uz(k) (0). Then using them as the initial data,
we may begin to integrate the system (1.12). The following alternatives may occur when approaching the
singular line. At the point s; = sy ( =0, 2)

E; (5:) < 8 Ny(si) >6; T @.1)
E;(si) > N; (s Ni(s) > 6, 4.2)
E;(s5) <8 N;i(sy) <8. 4.3)

In the case of (4.1)-¢4.2) we are far away from the singular point and the solution cannot be con-
tinued for s > s, since it would not make sense from the physical point of view lvi'l = |Ei/ Nj| — . Close
to singular points vj = c¢; the condition 4.3) is satisfied. In this case the numerical error increases during
the process of finding v{ since N; — 0. Therefore we proceed in the following manner. The values E; (s
—mAs), N;(8 ~mds) serve to construct the polynomials

N, = 2 Nins™; @.4)
E, = E E;s™. 4.5)

Extrapolating the singular points sj are found from Eq. ¢.6):
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N, (s)=0, i=0, 2 @.6)

and E;(s) from (4.5); subsequently, we proceed exactly as in the cases (4.1)-@.2). By variation of the
parameters £(0), u,(0) the relations (2.2) will be satisfied.

To cross a singular point at which E; = Nj = 0 one can integrate the system obtained from (1.12). If
the indeterminacy in the equation is eliminated by

Uy = E4/Ny for Ey—0, Ny—>0, v,—~>c,

and if to this is added the equations obtained by differentiation of the main system, then for vy — ¢, the
following system of equations results:

. pofpr 20
00— 2—p'—“”“ = 01
il (CI—U,)

c

p" -+ pwv’'=0; pp — pRT =0;

opp (P V2R p" +hor (T7P4-hy T'4-2 (') 200" == 0; @.7)
s " i " r 14 ‘2 7/ 7 \2 ’ 2
p__,“g_MT_Jru__(L)u(B_) +(L) _,(M_> —0;
poe T p p P T N
S S N S R
p p T W

p'—p'ct=0; p'—p'c*=2cc’0’; hpp' +hr T 4200 =0.

From this system vy, py, Pg, Vi, Py Pgand other values close to v, = ¢, can be determined. Similar for-
mulas can be obtained for v,.

5. Computation of the Parameters of the Mixture Dependent on Chemical Reactions. To be able to
calculate h(p, T), p(p, T), pu(p, T), hp, h, pp, py it is necessary to know the mixture composition and
also the total of chemical reactions taking place in the gas. In the case of equilibrium chemical reactions
then for a specific fixed set of components, there may be different equivalent sets of independent chemical
reactions. In our case the gas composition was as follows: xy = CO,, %, = CO, x3 = H,0, %, =Hy, x; = Oy,
%z = OH, x; = 0, %3 = H (x; are the component molar concentrations, nj, nj, nj; are the number of O, C,
H atoms in the component x;). The set of independent chemical reactions is now fixed as follows:

H, == 2H — 103264 kcal/kmole;

0, =20 — 117973;

(56.1)
O + H,==O0H -+ H — 1904;
OH + H,=H,0 + H + 14737,
CO + 0==C0, -+ 125753.
Then for determining x; the system of equations will consist of the Dalton equation (5.2), the equations
expressing the conservation of the number of atoms (5.3)-(5.4) and the law of active masses (5.5)~(5.9):
Sx;=1; (5.2)
ShieX; . znile:w . (5 3)
Sy Xy 2y X
Zh¥; _ 2MisXim (5.4)
ZhykX; 2y Xie
x,=F, 2, (5.5)
X
l
Xy = F5 ———x—gE M (5-6)

NATE N 6.7
2
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Fig. 2. Distribution of parameters on the symmetry axis
between the shock wave A and the body B. T, °X; p, atm;
a) frozen reactions; b) equilibrium reactions.

&zﬂ;;; (5.8)
2

x; = Fy 1/3‘?21%*— . (5.9)

The equations of the law of active masses are solved for the components X4-Xg. In the above F; = Fi(Kpi)s
where Kpi are the equilibrium constants of the reaction (5.1).

The system (5.2)-(5.9) is now solved in the following manner. For some fixed values of p and T we
select m predominating components where m is the number of elements in the mixture. Let the predomi-
nating components be x;, X, X;. Equations (5.2)-(5.4) are now written in the form

oo

3
ai]'XJ-"—: ainj, ’::I, 2, 3. (5.10)
= 4

! i

1

i

The nonlinear system (5.2)~(5.9) is solved by Newton's method, Taking xj=0, j=4,...,8a8 the
initia] approximation, x;is calculated, for j =1, 2, 3, using (5.10). Having found ail x; the remaining mix-
ture parameters are now determined:

b= 3H,(T) x;
n

o= Zp;xg
1 H
h=—(Mm——Mmy
f n P " P

oH H
hr = (in T?_T— -+ ZHiXtT——};- z!lixiT) ; (5.11)

i

s
B
1 :

pp = —7,— (P’ + pz”ixip);

A _4_£y
Or T (ZMLXLT T/’
Hy (T) = [H,(T)— H, (0)] + AH: (0).
The quantities xjp, xj7T in (5.11) are determined from the system (5.2)-(5.9), after differentiating with

respect to p and T; H;(T) are molar enthalpies of the components; AHg is the enthalpy of the formation of
component i, extrapolated to 0°K. The values of AH{ are shown in Table 1.
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TABLE 1. Values of AH, keal/mole

*; ] “CO, co I H;0 H, O, OH o] I H

AHY I 0 0 ! 0 | —9656 | 1335633 | 71197 125753 l 46804

T gk
2900 199
2800 148
2700 147
1 2600 106
2500 105
2400 1G%
. . . - a3
Qoor 0023 Qo3e  gosy  QO7  GO8% s

Fig. 3. Parameter distribution along the body and
along the shock wave p, atm; T, °K.

The values of K,,;, H; have been calculated using the approximations given in [5].

p1?

6. The method presented in Sections 1-5 is used to solve the following problem. A sphere together
with a cone (its semivertical angle being 9°) flows in an equilibrium gas mixture with ve = 2010 m/ sec,
To = 2060°K, Pe =1 atm, Mo = 2.14, R = 0.06 m. The calculation was performed in the first approxima-
tion (N =1). Figures 2 and 3 show the distribution of pressure, temperature, and concentration of the
main components on the symmetry axis along the body and along the shock wave.

The error in the calculations (N =1) of the mixture parameters was about 10%. Since the parameters
were approximated linearly on the midline, close to the singular points the flow map differs from the
correct one in the values of v, and the position of the Mach line. The solution of the problem (N =1) when
not even an approximate value of £(0) is known, takes several hours on a Minsk-22 computer. The time
required for one iteration is 20 min. The calculation of the mixture composition takes up to 80% of the
total calculation time. Therefore the mixture composition and the thermodynamic parameters should be
calculated in advance for a whole range of values of p and T and the tables or approximations thus pro-
duced used in the main calculations,

NOTATION
s, are coordinates tangential and normal to the generating line of the body;
v, u are velocity components in the direction of s, n axes, m/ sec;

r, ry  are the distances between a point in the flow or a point in the body and the symmetry axis, m;
K, R are the dimensionless curvature and radius of curvature of a body contour;

is the density, kg/m?;

is the pressure, atm;

is the temperature, °K;

is the total enthalpy of the mixture, kcal/kg;

is the molecular weight of the mixture;

is the entropy of the mixture, keal/kg- deg K;

WE BT
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is the velocity of sound, m/sec;
is the removal of the shock wave, m;
are the molar concentrations of the components.

Subscripts

-~ =

988

denotes the body;

denotes the shock wave;

denotes the midline between body and wave;

denotes differentiation with respect to the coordinate s.
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